Results and Clinical Decision Making Considerations

<table>
<thead>
<tr>
<th>Article</th>
<th>Intervention</th>
<th>Outcome Measures</th>
<th>Outcome change: only significant data reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bennett et al.</td>
<td>Prescribed articulated or solid bilateral AFOs</td>
<td>Recovery factor</td>
<td>40%, 44%</td>
</tr>
<tr>
<td>Dalvand et al.</td>
<td>HAMPO group w/ 3 months of OT SAFO group: SAFO w/ 3 months of OT</td>
<td>Average GMFM score before</td>
<td>26.12</td>
</tr>
<tr>
<td>Danino et al.</td>
<td>Prescribed orthoses</td>
<td>Mean change in Foot progression angle</td>
<td>R₂: 0.49, 0.54</td>
</tr>
<tr>
<td>Kerkmun et al. (2015)</td>
<td>Ventral shell AFO (vAFO) at stiffness levels rigid, stiff, or flexible</td>
<td>Peak power generation at push-off</td>
<td>1-98</td>
</tr>
<tr>
<td>Kerkmun et al. (2016)</td>
<td>Ventral shell AFO (vAFO) at stiffness levels rigid, stiff, or flexible</td>
<td>Shank to vertical angle</td>
<td>2-5</td>
</tr>
<tr>
<td>Maitas et al.</td>
<td>Transcutaneous peroneal (fibular) FES</td>
<td>Reduction in V̇O₂peak with AFO on</td>
<td>34.97, 35.43</td>
</tr>
<tr>
<td>MeiLahn et al.</td>
<td>Transcutaneous peroneal (fibular) FES</td>
<td>Leg extension in swing</td>
<td>11.9°</td>
</tr>
</tbody>
</table>

Purpose

- Expand upon a systematic review performed by Neto et al in 2010³
- Create guidelines for clinical decision making regarding LE orthotic intervention for children with spastic CP

Methods

- Searches carried out in 3 databases: PubMed, Embase, CINAHL
- Inclusion criteria: children with diplegic and hemiplegic spastic cerebral palsy (15 months to 18 years), LE orthotic interventions used for gait, clinical decision making, gait analysis, energy conservation
- PRISMA: 184 studies evaluated, 13 studies included

Gait Cycle

- 8 weeks of daily FES. Four hours per day, 6 days per week
- Lower limb gait mechanics
- Mean difference compared to control group
 - Hip center angle: 31.9°
 - Knee center angle: 10.4°
 - Heel normalized time in stance: 0.27
- Gastrocnemius spasticity
 - Significantly reduced post treatment and at follow-up
 - Dynamic GR & range of motion difference
 - Follow-up: 6-9°

Key Findings

- Optimal stiffness level is a balance between improving knee and ankle kinematics & enhancing push-off power and maintaining range of motion
- Orthoses can impact foot progression angle (FPA)
- FES systems demonstrated post treatment improvements in dynamic dorsi-flexion and gastrocnemius spasticity
- Significant impact on the trunk, upper extremities, or plantar pressure was not demonstrated with LE orthoses

Conclusions

- Orthotic intervention improves gait kinematics compared to barefoot or shoes only
- The best orthosis is the type optimized for the individualized impairments and needs of the patient

Clinical Relevance

- Orthoses are a widely used therapeutic intervention used to facilitate and improve the gait pattern
- Cerebral palsy presents with multifaceted symptoms rather than a set of specific impairments and the type of orthotic intervention needs to be optimized for each child’s gait limitations.

Acknowledgements / References

Figures:
- Figure 1: Representation of relevant phases of the gait cycle
- Figure 2: L to R: Posterior leafspring (PLS), Dual Carbon Fibre Spring AFO (DFSAFO), and Clampath. From Neto et al, 2010: Optimal stiffness of ankle foot orthoses for children with cerebral palsy. Dev Med Child Neurol. 6:1-10
- Figure 3: The Pediatric Walking Scale System. Images used with permission http://www.walkscale.com