The Efficacy of Treadmill Training on Balance Dysfunction in Individuals with Chronic Stroke: A Systematic Review

Zachary Tally, SPT, Laura Boetefuer, SPT, Courtney Kauk, SPT, Gabriela Perez, SPT, Lorraine Schrand, SPT, Jeffrey Hoder, PT, DPT, NCS

Doctor of Physical Therapy Division, Duke University School of Medicine

Background

- Stroke is a leading cause of long-term disability worldwide.
- Historically, treadmill exercise interventions for chronic stroke have been gait-specific.
- Reverse transfer states that repetitive practice of walking tasks improves non-walking functional tasks (i.e. balance).
- Limited research has addressed the efficacy of task-specific locomotor training on balance dysfunction.

Methods

- A systematic literature search of PubMed, EMBASE and CINAHL was performed. Eligible trials were published between 2007 and 2016.
- Methodological quality was assessed using PEDro criteria.

Inclusion Criteria:
- participants with stroke;
- effects of TT were used and compared to controls;
- outcomes included \(\geq 1 \) of the following: postural control/instability or deficits in balance;
- randomized control trial (RCT) methodology;
- e. article in English.

Exclusion Criteria:
- participants < 18 years old;
- Stroke onset within six months;
- statistical analyses not performed for within and/or between group comparisons.

Purpose

To determine the effect of treadmill training (TT) interventions on balance dysfunction in individuals with chronic stroke.

Results

- Eight studies were included in the qualitative analysis.
- Seven RCTs deemed higher quality (PEDro, 2015)
- 275 individuals; mean age: 54.8 yrs; onset: 6.3-70 mos
- Studies differed in TT implementation and use of adjunctive treatments.
- TT was as effective as conventional physical therapy treatment in improving balance measures.

<table>
<thead>
<tr>
<th>Article</th>
<th>Experimental Group</th>
<th>Control Group</th>
<th>Balance Outcome Measure</th>
<th>Results (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al, 2014</td>
<td>Circular belt TT, general exercise</td>
<td>TT, general exercise</td>
<td>BBS, LOS</td>
<td>★★★</td>
</tr>
<tr>
<td>Cho et al, 2015</td>
<td>TT with FES on GM + TA or TA only</td>
<td>TT</td>
<td>BBS</td>
<td>★</td>
</tr>
<tr>
<td>Choi et al, 2015</td>
<td>Cognitive motor dual-task with random auditory cue</td>
<td>TT</td>
<td>Sway velocity</td>
<td>★★★</td>
</tr>
<tr>
<td>Globas et al, 2012</td>
<td>TT</td>
<td>Conventional PT</td>
<td>BBS</td>
<td>★</td>
</tr>
<tr>
<td>Hwang et al, 2015</td>
<td>TT with tilt-sensor FES and WalkAide System</td>
<td>TT with tilt-sensor FES and WalkAide System in “off” position</td>
<td>BBS</td>
<td>★★★</td>
</tr>
<tr>
<td>Kang et al, 2016</td>
<td>Nordic TT</td>
<td>TT</td>
<td>BBS</td>
<td>★★★</td>
</tr>
<tr>
<td>Kim et al, 2011</td>
<td>TT</td>
<td>Lower extremity strengthening</td>
<td>BBS</td>
<td>★</td>
</tr>
<tr>
<td>Kim et al, 2015</td>
<td>TT eyes-closed on Gait Trainer</td>
<td>TT eyes-closed on Gait Trainer</td>
<td>LOS</td>
<td>★★★</td>
</tr>
</tbody>
</table>

Note: BBS = Berg Balance Scale; LOS = measures of Limits of Stability; TTFES = TT with functional electrical stimulation; GM = gluteus maximus; TA = tibialis anterior.

Results Interpretation: @Experimental group p < 0.05, ◆ Control group p< 0.05, ★Intergroup p< 0.05

Conclusions

- Moderate evidence exists in favor of TT interventions in balance and stroke rehabilitation programs.
- With TT, training intensity may be a more critical factor than specificity of training.
- Arm swing amplitude, cognitive demand & motor unit recruitment may be used to increase intensity.
- Critical parameters for “reverse transfer” of TT interventions have not yet been defined.

Clinical Relevance

- Improvements in objective balance measures exist as “off-label” benefits to gait-specific TT.
- Clinicians utilizing TT should incorporate objective measures of balance to assess for skill transference.

Acknowledgements / References

We would like to thank Leila Ledbetter, MLIS for her assistance in developing the search strategy and Chad Cook, PT, PhD, MBA, FAAOMPT for his expertise and assistance in directing our research methodology.